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- Accurate high-resolution gridded temperature datasets are necessary for . " - The addition of a temporal covariance component improved interpolation accuracy of
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- Current gridded datasets us simple inverse distance weighting temporal 'f' .o -- '-:"-' ; ;‘.'i’gf - Fitting a spatiotemp;)fral versus a pure spatial variogram is more subjective and complex,
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interpolation methods and lack a temporal component . - o 3"" % 36 : |
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Test advanced spatiotemporal interpolation techniques and compare the RMSE tmin 0.42°C 0.78°C Tainl ...j- x5 g“&:g How do the accuraae's of these models vary over.t|me.
accuracy to a simpler pure spatial model MAE tmax 0.31°C 0.72°C ¥ g_,:-. ;e MAE per year: Spatiotemporal vs. Pure Spatial
Hypothesis . . o i C
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- With annual temperature data, we do not expect strong temporal o8 24
covariance; therefore the spatiotemporal result will be very similar to the Units: Spatial minus ®-110 B | s = Spatiotemporal
pure spatial result. Spatiotemporal RMSE “ =0,.5] <§( °
=[.5,1] e - Lessyear to year variation from
T-Min Predictions for 1995 to .25 Degree Grid 0-112 . spatiotemporal model as expected
Methods , :
Spatiotemporal Pure Spatial S - Downward trend likely due to
[i*2 ] increase in station count through
Pure Spatial Approach = T ‘ time
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Data Organization (annual anomalies)
Pooled Variogram Fitting

Tmin: Fit Pooled Spatial Variogram

Next Steps
- Investigate monthly and daily anomaly data where we expect greater temporal
00 covariance and therefore greater benefit from ST methods
- Apply this method to improve precipitation interpolations
o~ - Compare this spatiotemporal method to the method of fitting a separate variogram
for each time step
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Kriging

- Choose year to krige
Cross Validation

- All stations by year




