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• Bayesian Inference views parameters as random variables 
while frequentists (“classical statistics”) view them as fixed

• Each parameter has a prior distribution which is then 
updated with the data 

• Using the model for the data, information about the 
parameter is updated based on observations

• The updated distribution for the parameter is called the 
posterior distribution

• Outline of Bayesian Inference

• Data: x, Parameter: θ

• Probability model for data, f(x|θ)

• Prior for θ, p(θ)

• Posterior for θ, π(θ|x) α f(x|θ)p(θ)

• f(x|θ) with x observed is referred to as the likelihood 
function L(x|θ) or L(θ;x)

Conclusion

Credible v Confidence Intervals
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• Draw samples from the posterior distribution using the 
Metropolis-Hastings algorithm

• Markov Chain Monte Carlo

• Can approximate population means of the 
distribution using sample means

• We can write our own code for the Metropolis-Hastings 
algorithm for a given posterior distribution 

• RSTAN can take a model description and construct the 
Metropolis-Hastings code

• Allows for more models to be fit more 
quickly/routinely

• Example: Linear Regression

• Y = β0 + β1X + ε, where ε ~ N(0, σ2) 

• β0 ~ Normal(0, 100)

• β1~ Normal(0, 100)

• σ2 ~ Gamma(.001, .001)

Example: Linear Regression

Goals: 

• Describe basic ideas of Bayesian Inference

• Show how RSTAN can be used for Bayesian Inference

• Show how Bayesian Inference can be used for handling 
missing data

• Compared average length and coverage percentage for 

credible (Bayesian) and confidence intervals (Frequentist)

• Model:
• Yi = α + βXi + εi

• ε1, ε2, ε3 iid N(0, σ2)
• Parameters: α, β, σ2

• Data: (X1, Y1), ….., (Xn, Yn) 
• Posterior: π(α, β, σ2|Y, X)

• Ran 100 simulations of 25 data points to calculate average 

length of credible/confidence intervals and coverage

• Coverage is the proportion of intervals that contain the 

true parameter value

• α (slope): similar coverage and similar length
• β (intercept): similar coverage and similar length
• σ: Bayesian approach had better coverage but credible 

interval was twice as long as the Confidence Interval

• Can use Bayesian approach to handle missing data

• Missing data points are treated as parameters with a 

prior and posterior distribution 

• Inference for other parameters now includes 

uncertainty about missing data

Data was generated using the following model: 

Y ~ 6 + 3X + ε, where ε ~ N(0, 3)

X ~ 5 + 5W + δ, where δ ~ N(0, 6)

W is a known covariate

10 values of x were removed and treated as missing

• Bayesian Inference is useful for estimating parameters

• Particularly in handling missing data

• RSTAN is fast and convenient for Bayesian inference

RSTAN provides a convenient way for users to specify models 
and provide data. It then generates MCMC based inference 
for the posterior distribution

Example: 

• Yi: global temperature average deviations at ith year from 

the 1950-1980 means

• Xi……Xn are years after 1980

• Used RSTAN with 20,000 iterations and 4 chains. 

• Poster mean of Mean of 

• alpha (Intercept): 1.61 
• sigma: 9.30 
• beta (slope): -3171.59 

• Data from NASA website

• Model:  Yi = α + βXi + εi , where ε ~ N(0, σ2)

RSTAN
• Bayesian approach uses Credible Intervals to summarize 

information about parameters

• Roughly analogous to a classical Confidence Interval

• 95% Credible Interval is the shortest interval that 
contains 95% of the data in a posterior distribution

• Length of the 95% credible interval shrinks with more data

RSTAN Example Code

Model string for RSTAN for the global means data 
model_string <- "
data {

int N;
vector[N] x;
vector[N] y;

}
parameters {

real alpha;
real beta;
real sigma;

}
model {

y ~ normal(alpha + beta * x, sigma);
}"

• Priors:
• α ~ N(0, 10), p(α)
• β ~ N(0, 10), p(β)
• σ2 ~ Gamma(.001, .001), 

p(σ2)

Posterior Inference from RSTAN

Credible Interval Point Estimate True Value

X1 (-247.14, -237.40) -242.21 -241.19

X2 (-145.83, -136.14) -140.91 -139.62

X3 (407.31, 416.94) 412.26 413.24

X4 (253.74, 263.62) 258.56 258.25

4 of the 10 Missing Data

Slope Sigma Intercept

Average Length of Confidence Interval 0.046 0.878 2.626

Percentage that have true values 95% 65% 95%

Slope Sigma Intercept

Average Length of Credible Interval 0.046 1.954 2.670

Percentage that have true values 94% 97% 95%
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