

PennState

Department of Statistics, The Pennsylvania State University, and Network for Sustainable Climate Risk Management

Introduction

- **Goal:** Interpolate temperatures across spatial locations
- **Challenges:**
- Temperature exhibits spatial dependence
- Other variables affect temperature (elevation, distance from
- Large data sets pose computational difficulty for prediction
- Our approach:
- Fit a model to temperature data, accounting for the effect
- Use mean squared prediction error (MSPE) to evaluate mean

Why is This of Interest

- Modern data sets in atmospheric science are often spatial
- Not only interested in "how much", but also "how much is w
- We may want to interpolate information across spatial obser
- Demonstrate spatial interpolation method for temperature d

Data and Methodology

- 14727 weather stations in the U.S. and part of Canada
- Data: average of highest temperature across 12 months

Methodology:

- Use kriging based on Gaussian process
 - Kriging: interpolate missing spatial data based on the observation
 - Standard kriging: better for small data sets used "geoR"
 - Lattice kriging: better for large data sets used "LatticeKri

Model comparison

- Split data into 90% "training" and 10% "test" data
- Fit model on "training" data
- Interpolate/ predict "test" locations

 $i \in location$

Use mean squared prediction error (MSPE) to evaluate m

 $MSPE = \sum_{i=1}^{n} (true \ value_i - prediction_i)^2$

• If MSPE is smaller, then the model is better

Contact:

Yanrong Mu The Pennsylvania State University, Network for Sustainable Climate Risk Management, Department of Statistics Email: <u>ywm5117@psu.edu</u>

Spatial Interpolation for Missing Temperature Data

Yanrong Mu, Ben Lee, and Murali Haran

	Model Buil	ding	
sea) nethods	 Exploratory Date Plot empirication Fit variogram Decide whet Model Fitting Fit different I used "geoR Use MSPE to 	ta Analysis (EDA) al variogram n using different models :her to include nugget models (exponential and " package in Rstudio o validate different mode	spherical) based on EDA Is (exponential and spherical)
ods	Covariance Mo	odel Exponential	Spherical
	MSPE	4.214176	4.209564
	 Model form (linear regression on elevation): y_i: temperature at location i; x_i: covariate (elevation) at locati y_i = x_i * β + ε_i, where β is parameter vector, ε_i is error at le ε₁,, ε_n is spatially dependent (from a Gaussian process) Decide whether to include covariate 		
	MSPF	Without Cov	variate With Covariate
	Exponential	4 214176	2 443368
	Spherical	4.209564	2.439944
	Standard k	Kriging VS Latt	ice Kriging
d values	 Standard kriging is infeasible for large data sets, eg. over 10,000 data p Standard kriging produces smaller MSPE than lattice kriging 		
age in R	Latti	ice Kriging (5000 data)	Standard Kriging (5000 data)
ge in R	MSPE 2.93	251	2.380298
	Results		
	 Exponential and spherical covariance model perform similarly based o Elevation is a significant spatial covariate (including elevation, reduce f Standard kriging is more reliable than lattice kriging Lattice kriging is necessary for large data sets; standard kriging is infeasing 		

Acknowledgements:

- This work was supported by the National Science Foundation through the Network for Sustainable Climate Risk Management (SCRiM) under NSF cooperative agreement GEO-1240507.
- Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

ion i ocation i

points

on MSPE MSPE)

asible

Interpolation Using Lattice Kriging

Lattice kriging runs quickly with almost 15,000 data points

• ~ 2 minutes using "ASUS UX303L Notebook PC" Average Temperature for 14727 Weather Stations

Maps were made using "ggplot2" and "LatticeKrig" packages in R

Conclusions and Future Work

Conclusions:

Future Work:

- Consider more than one covariate
- Work with non Gaussian data

References:

Longitude

Spatial Interpolation for Missing Temperature Data

• Exponential and spherical covariance model perform similarly • Elevation should be considered as covariate of temperature • Standard kriging is more reliable when it is feasible • Lattice kriging runs more quickly and necessary for large data sets

• Extend applications to precipitation data (eg. semicontinuous)

• Diggle, P.J. & Ribeiro Jr, P.J. Model Based Geostatistics Springer, New York, 2007 Paulo J. Ribeiro Jr & Peter J. Diggle geoR: a package for geostatistical analysis R-NEWS, 2001 • H. Wickham. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York, 2009. • Nychka D, Hammerling D, Sain S and Lenssen N (2016). "LatticeKrig: Multiresolution Kriging Based on Markov Random Fields." R package version 5.5

• Oliver Schabenberger, Carol A. Gotway, 2005. *Statistical Methods for Spatial Data Analysis*. Washington, DC: CHAPMAN & HALL/CRC

• R Core Team (2015). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/.